Prof.
Ji Zhang is currently a full
professor in Computer Science
(equivalent to a
distinguished/endowed professor in
North American universities) in
School of Sciences, Faculty of
Health, Engineering and Sciences at
the University of Southern
Queensland (USQ), Australia. He is
an IET Fellow, RSA Fellow, BCS
Fellow, IEEE Senior Member, ACM
Member, Australian Endeavour Fellow,
Queensland International Fellow and
Izaak Walton Killam Scholar
(Canada). He is also an academic
expert of Australian Academy of
Sciences. He was the Principal
Advisor for Research for the
Division of ICT Services at USQ
(2010-2013).
Prof. Zhang's research interests
include big data analytics, data
science, data mining, machine
learning and computational
intelligence. He has published over
240 papers, many appearing in
top-tier international journals
including IEEE Transactions on
Knowledge and Data Engineering
(TKDE), IEEE Transactions on
Cybernetics, IEEE Transactions on
Dependable and Secure Computing
(TDSC), ACM Transactions on
Knowledge Discovery from Data
(TKDD), ACM Transactions on
Intelligent Systems and Technology
(TIST), ACM Transactions on
Management Information Systems
(TMIS), ACM Transactions on Spatial
Algorithms and Systems, Information
Sciences, Knowledge-based Systems,
Neurocomputing, WWW Journal, Journal
of Intelligent Information Systems
(JIIS), Bioinformatics, Knowledge
and Information Systems (KAIS), and
top international conferences such
as AAAI, IJCAI, VLDB, SIGKDD, ICDE,
ICDM, WWW, CIKM, CVPR, COLING, PAKDD
and DASFAA. He has also authored one
monograph and 10 book chapters. He
has three(3) papers as the highest
cited papers in image mining and one
paper as the highly cited paper in
pattern mining. He received three(3)
best paper awards respectively in
WWW workshop 2021, DIKW 2021 and
WISE 2019, and the student travel
award of ICDM 2006.
Abstract:
Edwin P. Christmann, professor and chair of the secondary education department and graduate coordinator of Slippery Rock University’s mathematics and science teaching program and earned his Ph.D. at Old Dominion University. He served as a contributing editor to the National Science Teachers Association’s middle schools journal, Science Scope, serves on the editorial review boards of several other research journals, and has authored the books Technology-Based Inquiry for Middle School and Beyond the Numbers: Making Sense of Statistics; and he has coauthored Interpreting Assessment Data: Statistical Techniques You Can Use, Designing Elementary Instruction and Assessment: Using the Cognitive Domain, Designing and Assessing IEP Instruction for Students with Mild Disabilities: Using the Cognitive Domain, and Designing Middle and High School Instruction and Assessment: Using the Cognitive Domain. In addition, he has written over 100 articles and is a frequent speaker at international conferences. He currently teaches graduate-level courses in measurement and assessments, science education, and statistics, which are built on the foundation of his math and science experiences.
Abstract:This research compared the achievement of male and female students who were enrolled in an online univariate statistics course to students enrolled in a traditional face-to-face univariate statistics course. The subjects, 47 graduate students enrolled in univariate statistics classes at a public, comprehensive university, were randomly assigned to groups that used either online instruction or traditional face-to-face instruction. The effects of the independent variables of online univariate statistics instruction versus traditional face-to-face instruction on the dependent variable of statistics achievement were analyzed with a two-way analysis of variance. There was a significant difference between the achievement of students who used online univariate statistics instruction and those who used traditional face-to-face instruction (p = .001). The traditional face-to-face group scored higher with an effect size of 0.979, indicating that, on the average, those who were enrolled in a traditional face-to-face univariate statistics class outperformed 83.4% of those enrolled in the online statistics course. Moreover, females using online instruction outperformed males using online instruction and males enrolled in a traditional face-to-face course scored higher than females, with an effect size of 0.651, indicating that, on the average, those males outperformed 74.22% of the females enrolled in a traditional face-to-face statistics course.
Hai-Ning Liang is a Professor with the Department of Computing at Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou, China. He is the Founding Head of the Department of Computing. He is also the Founding Deputy Director of the Suzhou Key Lab for Virtual Reality Technologies, Suzhou Key Lab for Intelligent Virtual Engineering, and the XJTLU Virtual Engineering Center. He completed his PhD in computer science from Western University, Canada. Before joining XJTLU, he worked at the University of Queensland in Australia and the University of Manitoba in Canada. His main research interest falls in the area of human-computer interaction, focusing on virtual/augmented reality and gaming and learning technologies. He has published widely in top-rated journals and conferences in these areas, such as ACM ToG, ToCHI, IMWUT, UIST, CHI, and IEEE TVCG, VR, ISMAR. He is actively involved in the organization of leading international conferences and editing special issues and has given numerous invited talks at conferences.
Abstract:We are in the era of big data. Data visualization is a fast-growing area that uses computer-supported, interactive, and visual representation of abstract data to enhance people's exploration and understanding of the data. Human processing efficiency of graphics, images, and visual representations tends to be much higher than with numbers and texts. Visualizations of data enable people to effectively observe, browse, manipulate, study, explore, discover, understand, and interact with them, so as to discover hidden relationships and patterns in the data and help users obtain new insights and make effective decisions. In recent years, display technologies have developed quickly. This process has led to the creation of new interactive systems and platforms with unique affordances. For example, virtual reality (VR) provides highly immersive experiences and richer interactive possibilities and is now increasingly being used in data visualization and exploration. In this talk, I will share our research on the exploration of user performance, behavior, and feedback when exploring visualized data/information when completing visual analytic learning activities. We conducted a series of user studies with single and multiple users across several platforms (i.e., desktop, large displays, mobile tablets, and VR) to explore users’ performance, behaviors, and subjective preferences when using these devices for both single users and multiple users. Our research contributes to a better understanding of the potential effects and benefits that different display and interactive platforms could have on analytical reasoning, learning, and exploratory experiences. The aim of this research is to provide insights and guidelines for the future design and use of data/information visualization technologies for single and multiple users across different platforms.
Xiwen
Zhang is currently a Professor of
Digital Media Department, School of
Information Science, in the Beijing
Language and Culture University. He
worked as an associated professor
from 2002 to 2007 at the
Human-computer interaction
Laboratory, Institute of Software,
Chinese Academy of Sciences. From
2005 to 2006 he was a Postdoctor
advised by Prof. Michael R. Lyu in
the Department of Computer Science
and Engineering, the Chinese
University of Hong Kong. From
February to April in 2001 he was a
Research Assistant by Dr. KeZhang
Chen in the Department of Mechanical
Engineering, the University of Hong
Kong. From 2000 to 2002 he was a
Postdoctor advised by Prof. Shijie
Cai in the Computer Science and
Technology Department, Nanjing
University.
Prof. Zhang 's research interests
include pattern recognition,
computer vision, and human-computer
interaction, as well as their
applications in digital image,
digital video, and digital ink.
Prof. Zhang has published over 60
refereed journal and conference
papers in his research areas. His
SCI paper are published in Pattern
Recognition, IEEE Transactions on
Systems, Man, and Cybernetics - Part
B: Cybernetics, Computer-Aided
Design. He has published more than
twenty EI papers.
Prof. Zhang received his B.E. in
Chemical equipment and machinery
from Fushun Petroleum Institute
(became Liaoning Shihua University
since 2002) in 1995, and his Ph.D.
advised by Prof. ZongYing Ou in
Mechanical manufacturing and
automation from Dalian University of
Technology in 2000.
Abstract:
Peter pioneered the Big Data Analytics program for K-12 in education in 2014 where neither curriculum nor standards exist. His passion in data analytics is evident in his teachings and research work. He shares his data analytics passion with his students by supervising practical data analytics projects in his Big Data Analytics course. Both his and his students' work have been presented regularly at several international big data analytics conferences. In 2020, Peter and his students developed the Concordia International School online big data online course (www.cissbigdata.org). Peter began his career as an aerospace engineer in the preliminary design of a supersonic Mach 2+ Unmanned Aerial Vehicle (UAV) for the Department of National Defence, Canada. He later found his calling to be a teacher. With a background in Electrical Engr. (B.Sc.), Mechanical Engr. (M.Sc.), Aerospace Engr. (Ph.D.) and Dip. Ed. Peter readily integrates practical real life engineering experience into the classroom. He also developed an Aerospace Engineering course for high school and is the teacher advisor to The Concordia Phoenix Squadron (https://phoenixsquadron.concordiashanghai.org). He is a member of the program committee for International Big Data and Analytics Educational Conference and is on the Advisory Board to True North School Hanoi, Vietnam. He has taught in Australia, Canada, Indonesia, Malaysia, Singapore and is currently teaching in China.
Abstract: